Source code for smpl.envs.mabenv

import copy

import mpctools as mpc
import timeout_decorator
from scipy import integrate

from .helpers.mab_helpers import xscale, uscale, UtilsHelper, ControllerHelper
from .utils import *

STEP_TIMEOUT_LENGTH = 30  # how long in second(s) a step can take before a timeout error is triggered.


[docs]class MAbUpstreamMPC: def __init__( self, controller, action_dim=7 + 1 + 1, observation_dim=17 + 2 + 1951) -> None: self.controller = controller # self.xss = xss # self.uss = uss # self.xscale = xscale # self.uscale = uscale # self.dt_spl = dt_spl self.action_dim = action_dim self.observation_dim = observation_dim num_x = [17, 2, 1951] # Number of states for each unit num_u = [7, 1, 1] # Number of inputs for each unit Q = np.eye(num_x[0]); R = np.eye(num_u[0]); N = 300 # Q, R, N are for the EMPC controller. N is the memory length. solver_opts = {'tol': 1E-5} # Change tolerance casadi_opts = {'ipopt.linear_solver': 'mumps', 'verbose': False, 'ipopt.print_level': 0, 'ipopt.tol': 1E-4} self.mpc_cont = controller._build_mpc_up(Q, R, N, controller.dt_spl, controller.xss[:controller.Nx_up], controller.uss[:controller.Nu_up], controller.xscale[:controller.Nx_up], controller.uscale[:controller.Nu_up]) controller.mpc_cont = self.mpc_cont self.mpc_cont.initialize(casadioptions=casadi_opts, solveroptions=solver_opts)
[docs] def predict(self, o): u = np.zeros(self.action_dim) x = o x_up = x[0:17] # 17 x_buffer = x[17:19] # 2 x_down = x[19:] # 1951 self.mpc_cont.fixvar("x", 0, x_up) self.mpc_cont.solve() if self.mpc_cont.stats["status"] != "Solve_Succeeded": 0 # break else: self.mpc_cont.saveguess() u[:7] = np.squeeze(self.mpc_cont.var["u", 0]) u[7] = self.controller._pcontroller(x_buffer[0]) u[8] = self.controller._switcher(x_down) return u
[docs]class MAbUpstreamEMPC: def __init__( self, controller, action_dim=7 + 1 + 1, observation_dim=17 + 2 + 1951) -> None: self.controller = controller self.action_dim = action_dim self.observation_dim = observation_dim num_x = [17, 2, 1951] # Number of states for each unit num_u = [7, 1, 1] # Number of inputs for each unit Q = np.eye(num_x[0]); R = np.eye(num_u[0]); N = 300 # Q, R, N are for the EMPC controller. N is the memory length. solver_opts = {'tol': 1E-5} # Change tolerance casadi_opts = {'ipopt.linear_solver': 'mumps', 'verbose': False, 'ipopt.print_level': 0, 'ipopt.tol': 1E-4} self.empc_cont = controller._build_empc_up(N, controller.dt_spl, controller.xss[:controller.Nx_up], controller.uss[:controller.Nu_up], controller.xscale[:controller.Nx_up], controller.uscale[:controller.Nu_up]) controller.empc_cont = self.empc_cont self.empc_cont.initialize(casadioptions=casadi_opts, solveroptions=solver_opts)
[docs] def predict(self, o): u = np.zeros(self.action_dim) x = o x_up = x[0:17] # 17 x_buffer = x[17:19] # 2 x_down = x[19:] # 1951 self.empc_cont.fixvar("x", 0, x_up) self.empc_cont.solve() if self.empc_cont.stats["status"] != "Solve_Succeeded": 0 # break else: self.empc_cont.saveguess() u[:7] = np.squeeze(self.empc_cont.var["u", 0]) u[7] = self.controller._pcontroller(x_buffer[0]) u[8] = self.controller._switcher(x_down) return u
[docs]class MAbEnvGym(smplEnvBase): def __init__( self, dataset_dir='smpl/configdata/mabenv', dense_reward=True, normalize=True, debug_mode=False, action_dim=7 + 1 + 1, observation_dim=17 + 2 + 1951, reward_function=None, done_calculator=None, max_observations=None, min_observations=None, max_actions=None, min_actions=None, observation_name=None, action_name=None, np_dtype=np.float32, max_steps=200, error_reward=-100.0, initial_state_deviation_ratio=0.1, upstream_states=17 + 2, switch_threshold=0.5, dt_itgr=60, dt_spl=60, ss_dir=None, standard_reward_style='setpoint') -> None: """[summary] Args: dataset_dir (str, optional): The dataset directory that has uss.npy, xss.npy, ulb.npy, uub.npy, xlb.npy, xub.npy. You could find it in 'smpl/configdata/mabenv' when you clone from github. upstream_states (int, optional): The number of states to use for the upstream. initial_state_deviation_ratio (float, optional): The initial state range around steady states. Defaults to 0.1. switch_threshold (float, optional): When action[-1] >= switch_threshold, we change the buffer tank. Defaults to 0.5. dt_itgr (int, optional): Time integration (min), ode solver dt_itgr per step. dt_spl (int, optional): Time sampling (min) sample a observation from the model every dt_spl. init_mpc_controllers (bool, optional): Initialize MPC and EMPC controllers. Defaults to True. ss_dir (str, optional): Directory of steady state and steady action files. Defaults to None. standard_reward_style (str, optional): Reward style, can be 'setpoint', 'productivity' or 'yield'. The 'setpoint' reward bases on how the controller is able to move the observation close to the steady state observation; the 'productivity' reward bases on the MAb upstream productivity; the 'yield' computes the collected mAb yield from downstream. Defaults to 'setpoint'. """ # define arguments self.step_count = 0 self.total_reward = 0 self.done = False self.dense_reward = dense_reward self.normalize = normalize self.debug_mode = debug_mode self.action_dim = action_dim self.observation_dim = observation_dim self.reward_function = reward_function self.done_calculator = done_calculator self.max_observations = max_observations self.min_observations = min_observations self.max_actions = max_actions self.min_actions = min_actions self.observation_name = observation_name self.action_name = action_name if self.observation_name is None: self.observation_name = ['Xv1', 'Xt1', 'GLC1', 'GLN1', 'LAC1', 'AMM1', 'mAb1', 'V1', 'Xv2', 'Xt2', 'GLC2', 'GLN2', 'LAC2', 'AMM2', 'mAb2', 'V2', 'T'] if self.action_name is None: self.action_name = ['F_in', 'F_1', 'F_r', 'F_2', 'GLC_in', 'GLN_in', 'Tc'] self.np_dtype = np_dtype self.max_steps = max_steps self.error_reward = error_reward if self.reward_function is None: self.reward_function = self.reward_function_standard if self.done_calculator is None: self.done_calculator = self.done_calculator_standard self.upstream_states = upstream_states self.initial_state_deviation_ratio = initial_state_deviation_ratio self.switch_threshold = switch_threshold self.dataset_dir = dataset_dir self.dt_itgr = dt_itgr self.dt_spl = dt_spl self.standard_reward_style = standard_reward_style self.num_x = [17, 2, 1951] # Number of states for each unit self.num_u = [7, 1, 1] # Number of inputs for each unit assert sum(self.num_x) == observation_dim assert sum(self.num_u) == action_dim self.utils_helper = UtilsHelper() self.xss, self.uss = self.utils_helper.prepare_ss(self.dataset_dir) # 9, 1970 self.steady_observations = self.xss / xscale self.steady_actions = self.uss / uscale # set max and min self.min_actions, self.max_actions, self.min_observations, self.max_observations = self.utils_helper.load_bounds( self.dataset_dir) self.min_actions, self.max_actions, self.min_observations, self.max_observations = self.min_actions / uscale, self.max_actions / uscale, self.min_observations / xscale, self.max_observations / xscale self.controller = ControllerHelper(self.num_x, self.num_u, self.max_steps, dt_itgr, dt_spl, xscale, uscale, self.xss, self.uss) self.plant = self.controller._build_plant() # define the state and action spaces self.max_observations = np.array(self.max_observations, dtype=self.np_dtype) self.min_observations = np.array(self.min_observations, dtype=self.np_dtype) self.max_actions = np.array(self.max_actions, dtype=self.np_dtype) self.min_actions = np.array(self.min_actions, dtype=self.np_dtype) if self.normalize: self.observation_space = spaces.Box(low=-1, high=1, shape=(self.observation_dim,)) self.action_space = spaces.Box(low=-1, high=1, shape=(self.action_dim,)) else: self.observation_space = spaces.Box(low=self.min_observations, high=self.max_observations, shape=(self.observation_dim,)) self.action_space = spaces.Box(low=self.min_actions, high=self.max_actions, shape=(self.action_dim,))
[docs] def observation_beyond_box(self, observation): """check if the observation is beyond the box, which is what we don't want. Args: observation ([np.ndarray]): This is denormalized observation, as usual. Returns: [bool]: observation is beyond the box or not. """ # TODO: check for how long? return np.any( observation[:self.upstream_states] > self.max_observations[:self.upstream_states] * 1.05) or np.any( observation[:self.upstream_states] < self.min_observations[:self.upstream_states]) or np.any( np.isnan(observation)) or np.any(np.isinf(observation))
[docs] def reward_function_standard(self, previous_observation, action, current_observation, reward=None): if reward is not None: return reward elif self.observation_beyond_box(current_observation) or self.action_beyond_box(action): return self.error_reward # TOMODIFY: insert your own reward function here. if self.standard_reward_style == 'setpoint': reward = -(np.square(current_observation[:17 + 2] - self.steady_observations[:17 + 2])).mean() else: xx = current_observation * xscale uu = action * uscale productivity = xx[6] * uu[1] + current_observation[14] * uu[3] # range of reward is [0, inf) if self.standard_reward_style == 'productivity': reward = productivity elif self.standard_reward_style == 'yield': # current_observation[19] is the inlet concentration # current_observation[-14] is the outlet concentration. The smaller the fewer waste, the better. downstream_yield = 1 - current_observation[-14] / ( current_observation[19] + 1e-8) # range of downstream_yield is [0,1]. reward = productivity * downstream_yield else: raise ValueError("standard_reward_style should be either 'setpoint' or 'productivity'") reward = max(self.error_reward, reward) # reward cannot be smaller than the error_reward if self.debug_mode: print("reward:", reward) return reward
[docs] def done_calculator_standard(self, current_observation, step_count, reward, done=None, done_info=None): if done is None: done = False else: if done_info is not None: return done, done_info else: raise Exception("When done is given, done_info should also be given.") if done_info is None: done_info = {"terminal": False, "timeout": False} else: if done_info["terminal"] or done_info["timeout"]: done = True return done, done_info if self.observation_beyond_box(current_observation): done_info["terminal"] = True done = True if reward == self.error_reward: done_info["terminal"] = True done = True if step_count >= self.max_steps: # same as range(0, max_steps) done_info["terminal"] = True done_info["timeout"] = True done = True return done, done_info
[docs] def sample_initial_state(self, lower_bound=None, upper_bound=None): """[summary] Args: lower_bound (float, optional): proportional to steady state. upper_bound (float, optional): proportional to steady state. Returns: [np.ndarray]: [description] """ self.upstream_states if lower_bound is None: lower_bound = 1 - self.initial_state_deviation_ratio if upper_bound is None: upper_bound = 1 + self.initial_state_deviation_ratio low = self.steady_observations[:self.upstream_states] * lower_bound low = np.concatenate([low, self.steady_observations[self.upstream_states:]]) up = self.steady_observations[:self.upstream_states] * upper_bound up = np.concatenate([up, self.steady_observations[self.upstream_states:]]) return np.random.uniform(low, up)
[docs] def evenly_spread_initial_states(self, val_per_state, dump_location=None): """ Evenly spread initial states. This function is needed only if the environment has steady_observations. Args: val_per_state (int): how many values to sampler per state. Returns: [initial_states]: evenly spread initial_states. """ initial_state_deviation_ratio = self.initial_state_deviation_ratio steady_observations = self.steady_observations[:self.upstream_states] len_obs = len(steady_observations) val_range = val_per_state ** len_obs initial_states = np.zeros([val_range, len_obs]) tmp_o = [] for oi in range(len_obs): tmp_o.append(np.linspace(steady_observations[oi] * (1.0 - initial_state_deviation_ratio), steady_observations[oi] * (1.0 + initial_state_deviation_ratio), num=val_per_state, endpoint=True)) for i in range(val_range): tmp_val_range = i curr_val = [] for oi in range(len_obs): rmder = tmp_val_range % val_per_state curr_val.append(tmp_o[oi][rmder]) tmp_val_range = int((tmp_val_range - rmder) / val_per_state) initial_states[i] = curr_val initial_states[i] = np.concatenate([initial_states[i], self.steady_observations[self.upstream_states:]]) if dump_location is not None: np.save(dump_location, initial_states) return initial_states
[docs] def reset(self, initial_state=None, normalize=None): """ required by gym. This function resets the environment and returns an initial observation. """ self.step_count = 0 self.total_reward = 0 self.done = False if initial_state is not None: initial_state = np.array(initial_state, dtype=self.np_dtype) observation = initial_state self.init_observation = initial_state else: observation = self.sample_initial_state() # x0 self.init_observation = observation self.previous_observation = observation # TOMODIFY: reset your environment here. self.t = [] self.Xi = [] self.Xi += [observation] normalize = self.normalize if normalize is None else normalize if normalize: observation, _, _ = normalize_spaces(observation, self.max_observations, self.min_observations) return observation
@timeout_decorator.timeout(STEP_TIMEOUT_LENGTH) def _simulation(self, xk, uk): xk = copy.deepcopy(xk) uk = copy.deepcopy(uk) if uk[-1] >= self.switch_threshold: # if self.debug_mode: # print(xk[-1] * uk[7], 'mg of mAb is captured. Switching the column') print(xk[-1] * uk[7], 'mg of mAb is captured. Switching the column') xk[19:-1] = 0 # (1950). Set state vector of downstream capture column to 0 xk[-1] = 0 # In new column, accumulated mab is 0 uk[-1] = 0 # Reset # Integrator xkp1 = self.plant.sim(xk, uk) # update accumulated mAb xkp1[-1] += self.dt_itgr * ( xkp1[19] - xkp1[-14]) # difference between inlet concentration and outlet concentration return xkp1
[docs] def step(self, action, normalize=None): """ required by gym. This function performs one step within the environment and returns the observation, the reward, whether the episode is finished and debug information, if any. """ if self.debug_mode: print("action:", action) reward = None done = None done_info = {"terminal": False, "timeout": False} action = np.array(action, dtype=self.np_dtype) normalize = self.normalize if normalize is None else normalize if normalize: action, _, _ = denormalize_spaces(action, self.max_actions, self.min_actions) # TOMODIFY: proceed your environment here and collect the observation. self.t += [self.step_count * self.dt_spl] # ---- to capture numpy warnings ---- with warnings.catch_warnings(record=True) as w: warnings.simplefilter("error") try: for i in range(0, self.controller.dt_ratio): xk = self._simulation(self.Xi[self.step_count * self.controller.dt_ratio + i], action) self.Xi += [copy.deepcopy(xk)] observation = xk except Exception as e: print("Got Exception/Warning: ", e) observation = self.previous_observation reward = self.error_reward done = True done_info["terminal"] = True # /---- to capture numpy warnings ---- # compute reward if not reward: reward = self.reward_function(self.previous_observation, action, observation, reward=reward) # compute done if not done: done, done_info = self.done_calculator(observation, self.step_count, reward, done=done, done_info=done_info) self.previous_observation = observation self.total_reward += reward if self.dense_reward: reward = reward # conventional elif not done: reward = 0.0 else: reward = self.total_reward # clip observation so that it won't be beyond the box observation = observation.clip(self.min_observations, self.max_observations) if normalize: observation, _, _ = normalize_spaces(observation, self.max_observations, self.min_observations) self.step_count += 1 info = {} info.update(done_info) return observation, reward, done, info
[docs] def evalute_algorithms(self, algorithms, num_episodes=1, error_reward=None, initial_states=None, to_plt=True, plot_dir='./plt_results'): """ when excecuting evalute_algorithms, the self.normalize should be False. algorithms: list of (algorithm, algorithm_name, normalize). algorithm has to have a method predict(observation) -> action: np.ndarray. num_episodes: number of episodes to run error_reward: overwrite self.error_reward initial_states: None, location of numpy file of initial states or a (numpy) list of initial states to_plt: whether generates plot or not plot_dir: None or directory to save plots returns: list of average_rewards over each episode and num of episodes """ try: assert self.normalize is False except AssertionError: print("env.normalize should be False when executing evalute_algorithms") self.normalize = False if error_reward is not None: self.error_reward = error_reward if plot_dir is not None: mkdir_p(plot_dir) initial_states = self.set_initial_states(initial_states, num_episodes) observations_list = [[] for _ in range( len(algorithms))] # observations_list[i][j][t][k] is algorithm_i_game_j_observation_t_element_k actions_list = [[] for _ in range(len(algorithms))] # actions_list[i][j][t][k] is algorithm_i_game_j_action_t_element_k rewards_list = [[] for _ in range(len(algorithms))] # rewards_list[i][j][t] is algorithm_i_game_j_reward_t for n_epi in tqdm(range(num_episodes)): for n_algo in range(len(algorithms)): algo, algo_name, normalize = algorithms[n_algo] try: algo.reset() except AttributeError: pass algo_observes = [] algo_actions = [] algo_rewards = [] # list, for this algorithm, reawards of this trajectory. init_obs = self.reset(initial_state=initial_states[n_epi]) # algo_observes.append(init_obs) o = init_obs done = False while not done: if normalize: o, _, _ = normalize_spaces(o, self.max_observations, self.min_observations) a = algo.predict(o) if normalize: a, _, _ = denormalize_spaces(a, self.max_actions, self.min_actions) algo_actions.append(a) o, r, done, _ = self.step(a) algo_observes.append(o) algo_rewards.append(r) observations_list[n_algo].append(algo_observes) actions_list[n_algo].append(algo_actions) rewards_list[n_algo].append(algo_rewards) if to_plt: # plot observations for n_o in range(self.observation_dim): o_name = self.observation_name[n_o] plt.close("all") plt.figure(0) plt.title(f"{o_name}") for n_algo in range(len(algorithms)): alpha = 1 * (0.7 ** (len(algorithms) - 1 - n_algo)) _, algo_name, _ = algorithms[n_algo] plt.plot(np.array(observations_list[n_algo][-1])[:, n_o], label=algo_name, alpha=alpha) plt.plot([initial_states[n_epi][n_o] for _ in range(self.max_steps)], linestyle="--", label=f"initial_{o_name}") plt.plot([self.steady_observations[n_o] for _ in range(self.max_steps)], linestyle="-.", label=f"steady_{o_name}") plt.xticks(np.arange(1, self.max_steps + 2, 1)) plt.annotate(str(initial_states[n_epi][n_o]), xy=(0, initial_states[n_epi][n_o])) plt.annotate(str(self.steady_observations[n_o]), xy=(0, self.steady_observations[n_o])) plt.legend() if plot_dir is not None: path_name = os.path.join(plot_dir, f"{n_epi}_observation_{o_name}.png") plt.savefig(path_name) plt.close() # plot actions for n_a in range(self.action_dim): a_name = self.action_name[n_a] plt.close("all") plt.figure(0) plt.title(f"{a_name}") for n_algo in range(len(algorithms)): alpha = 1 * (0.7 ** (len(algorithms) - 1 - n_algo)) _, algo_name, _ = algorithms[n_algo] plt.plot(np.array(actions_list[n_algo][-1])[:, n_a], label=algo_name, alpha=alpha) plt.plot([self.steady_actions[n_a] for _ in range(self.max_steps)], linestyle="-.", label=f"steady_{a_name}") plt.xticks(np.arange(1, self.max_steps + 2, 1)) plt.legend() if plot_dir is not None: path_name = os.path.join(plot_dir, f"{n_epi}_action_{a_name}.png") plt.savefig(path_name) plt.close() # plot rewards plt.close("all") plt.figure(0) plt.title("reward") for n_algo in range(len(algorithms)): alpha = 1 * (0.7 ** (len(algorithms) - 1 - n_algo)) _, algo_name, _ = algorithms[n_algo] plt.plot(np.array(rewards_list[n_algo][-1]), label=algo_name, alpha=alpha) plt.xticks(np.arange(1, self.max_steps + 2, 1)) plt.legend() if plot_dir is not None: path_name = os.path.join(plot_dir, f"{n_epi}_reward.png") plt.savefig(path_name) plt.close() observations_list = np.array(observations_list) actions_list = np.array(actions_list) rewards_list = np.array(rewards_list) return observations_list, actions_list, rewards_list
# /---- standard ----
[docs] def evaluate_rewards_mean_std_over_episodes(self, algorithms, num_episodes=1, error_reward=None, initial_states=None, to_plt=True, plot_dir='./plt_results', computer_on_episodes=False): """ returns: mean and std of rewards over all episodes. since the rewards_list is not aligned (e.g. some trajectories are shorter than the others), so we cannot directly convert it to numpy array. we have to convert and unwrap the nested list. if computer_on_episodes, we first average the rewards_list over episodes, then compute the mean and std. else, we directly compute the mean and std for each step. """ result_dict = {} observations_list, actions_list, rewards_list = self.evalute_algorithms(algorithms, num_episodes=num_episodes, error_reward=error_reward, initial_states=initial_states, to_plt=to_plt, plot_dir=plot_dir) from warnings import warn warn('The function evaluate_rewards_mean_std_over_episodes is deprecated. Please use report_rewards.', DeprecationWarning, stacklevel=2) for n_algo in range(len(algorithms)): _, algo_name, _ = algorithms[n_algo] rewards_list_curr_algo = rewards_list[n_algo] if computer_on_episodes: rewards_mean_over_episodes = [] # rewards_mean_over_episodes[n_epi] is mean of rewards of n_epi for n_epi in range(num_episodes): if rewards_list_curr_algo[n_epi][ -1] == self.error_reward: # if error_reward is provided, self.error_reward is overwritten in self.evalute_algorithms rewards_mean_over_episodes.append(self.error_reward) else: rewards_mean_over_episodes.append(np.mean(rewards_list_curr_algo[n_epi])) rewards_mean = np.mean(rewards_mean_over_episodes) rewards_std = np.std(rewards_mean_over_episodes) else: unwrap_list = [] for games_r_list in rewards_list_curr_algo: unwrap_list += games_r_list rewards_mean = np.mean(unwrap_list) rewards_std = np.std(unwrap_list) print(f"{algo_name}_reward_mean: {rewards_mean}") result_dict[algo_name + "_reward_mean"] = rewards_mean print(f"{algo_name}_reward_std: {rewards_std}") result_dict[algo_name + "_reward_std"] = rewards_std if plot_dir is not None: f_dir = os.path.join(plot_dir, 'result.json') else: f_dir = 'result.json' json.dump(result_dict, open(f_dir, 'w+')) return observations_list, actions_list, rewards_list