Source code for smpl.envs.models.atropine_process

import numpy as np
from casadi import reshape, vertcat, SX, integrator, mtimes, inf, nlpsol

from ..helpers.constants import NUM_COMPONENTS, MASS_DENSITIES, MOLECULAR_WEIGHT, EPS, REACTION_STOICHIOMETRY, \
    RATE_CONSTANTS, ACTIVATION_ENERGIES, GAS_CONSTANT, SEPARATION_PARTITION_COEFFICIENTS


[docs]class Stream: def __init__(self): self.total_volumetric_flowrate = 0.0 # [L/min] self.total_mass_flowrate = 0.0 # [g/min] self.temperature = 0.0 # [K] self.component_mass_flowrate = np.zeros(NUM_COMPONENTS, dtype=object) # [g/min] self.component_volumetric_flowrate = np.zeros(NUM_COMPONENTS, dtype=object) # [L/min] self.component_molar_concentration = np.zeros(NUM_COMPONENTS, dtype=object) # [mol/L] self.component_mass_concentration = np.zeros(NUM_COMPONENTS, dtype=object) # [g/L] self.component_mass_fraction = np.zeros(NUM_COMPONENTS, dtype=object) # [dimensionless] self.average_mass_density = 0.0 # [g/L]
[docs] def component_volumetric_flowrate_to_component_mass_flowrate(self): self.component_mass_flowrate = (self.component_volumetric_flowrate * MASS_DENSITIES)[:] # [g/min]
[docs] def evaluate_total_volumetric_flowrate(self): self.total_volumetric_flowrate = self.total_mass_flowrate / (self.average_mass_density + EPS) # [L/min]
[docs] def evaluate_average_mass_density(self): self.average_mass_density = 1.0 / np.sum(self.component_mass_fraction / MASS_DENSITIES) # [g/L]
[docs] def evaluate_total_mass_flowrate(self): self.total_mass_flowrate = np.sum(self.component_mass_flowrate) # [g/min]
[docs] def evaluate_component_molar_concentration(self): self.component_molar_concentration = self.component_mass_fraction \ * self.average_mass_density \ / MOLECULAR_WEIGHT # [mol/L]
[docs] def component_molar_concentration_to_component_mass_concentration(self): self.component_mass_concentration = self.component_molar_concentration * MOLECULAR_WEIGHT # [g/L]
[docs] def component_mass_concentration_to_component_mass_flowrate(self): self.component_mass_flowrate = (self.component_mass_concentration * self.total_volumetric_flowrate)[:] # [g/min]
[docs] def evaluate_component_mass_fraction(self): self.component_mass_fraction = self.component_mass_flowrate / ( np.sum(self.component_mass_flowrate) + EPS) # [dimensionless]
[docs] def total_volumetric_flowrate_to_total_mass_flowrate(self): self.total_mass_flowrate = self.average_mass_density * self.total_volumetric_flowrate # [g/min]
[docs] def total_mass_flowrate_to_component_mass_flowrate(self): self.component_mass_flowrate = self.component_mass_fraction * self.total_mass_flowrate # [g/min]
[docs] def print_stream(self): print(f'Total volumetric flowrate: {self.total_volumetric_flowrate} mL/min') print(f'Total mass flowrate: {self.total_mass_flowrate} g/min') print(f'Component mass flowrate: {self.component_mass_flowrate} g/min') print(f'Component volumetric flowrate: {self.component_volumetric_flowrate} g/min') print(f'Component molar concentration: {self.component_molar_concentration} mol/mL') print(f'Component mass concentration: {self.component_mass_concentration} g/mL') print(f'Component mass fraction: {self.component_mass_fraction}') print(f'Average mass density: {self.average_mass_density} g/mL')
# mixer model
[docs]class Mixer: def __init__( self, ID: int, num_inputs: int ): self.ID = ID # equipment ID. May be used for diagnostics. Currently not in use self.num_inputs = num_inputs # number of inputs to the mixer # initialize streams self.input = [Stream() for _ in range(self.num_inputs)] # input streams self.output = Stream() # single output stream
[docs] def mix_streams_mass(self): component_mass_flowrate = np.zeros(NUM_COMPONENTS, dtype=object) # [] # add the streams for stream in self.input: component_mass_flowrate += stream.component_mass_flowrate # [] self.output.total_mass_flowrate = np.sum(component_mass_flowrate) self.output.component_mass_flowrate = component_mass_flowrate[:]
# tubular reactor model
[docs]class TubularReactor: def __init__( self, ID: int, volume: float = 0.3, num_discretization_points: int = 5 ): """diameter in mm""" self.ID = ID # equipment ID. May be used for diagnostics. Currently not in use self.num_discretization_points = num_discretization_points # [dimensionless] self.volume = volume # [L] self.volume_per_section = self.volume / num_discretization_points # [L] self.input = Stream() self.output = Stream() # xdot for the reactor
[docs] def get_derivative(self, x, u, d): # x = states # u = inputs # d = disturbances [currently unused] # reshape array. currently using casadi reshape # function since the numpy reshape does not work for casadi variables x = reshape(x, (NUM_COMPONENTS, self.num_discretization_points)) # create holder for state velocities. object datatype to allow for casadi variables xdot = np.zeros((NUM_COMPONENTS, self.num_discretization_points), dtype=object) T = u[1] # reactor temperature Qtot = u[0] # total volumetric flow rate [L/min] # start at 2nd discrete point because xdot[:,0] = 0 for l in range(1, self.num_discretization_points): # Eq. (7) R1 = RATE_CONSTANTS[0] \ * np.exp(-ACTIVATION_ENERGIES[0] / (GAS_CONSTANT * T)) \ * x[0, l] \ * x[2, l] # [mol/L/min] R2 = RATE_CONSTANTS[1] \ * np.exp(-ACTIVATION_ENERGIES[1] / (GAS_CONSTANT * T)) \ * x[3, l] \ * x[6, l] # [mol/L/min] R3 = RATE_CONSTANTS[2] \ * np.exp(-ACTIVATION_ENERGIES[2] / (GAS_CONSTANT * T)) \ * x[4, l] \ * x[10, l] # [mol/L/min] R4 = RATE_CONSTANTS[3] \ * np.exp(-ACTIVATION_ENERGIES[3] / (GAS_CONSTANT * T)) \ * x[4, l] \ * x[10, l] # [mol/L/min] for i in range(NUM_COMPONENTS): # Eq. (4) and the reaction rate matrix r = S*R xdot[i, l] = -(Qtot / self.volume_per_section) \ * (x[i, l] - x[i, l - 1]) \ + (REACTION_STOICHIOMETRY[i][0] * R1) \ + (REACTION_STOICHIOMETRY[i][1] * R2) \ + (REACTION_STOICHIOMETRY[i][2] * R3) \ + (REACTION_STOICHIOMETRY[i][3] * R4) # [mol/L/min] # reshape arrays to a vector xdot = reshape(xdot, (self.num_discretization_points * NUM_COMPONENTS, 1)) return xdot
# liquid-liquid separator model
[docs]class LLSeparator: def __init__( self, ID: int, volume: float ): self.ID = ID # ID of unit. currently used self.volume = volume # volume of L-L-separator [L] self.input = Stream() # one inlet self.output = [Stream() for _ in range(2)] # two outlets # calculate the derivatives
[docs] def get_derivative(self, x, z, u, d): # x = states # u = internal inputs # d = disturbances [currently unused] Qtot = u[0] # total volumetric flowrate c_in = u[1:15] # inlet concentration of the components from reactor 3 # Eq. (10) xdot = (Qtot / self.volume) * (c_in - x) # [mol/L] return xdot
[docs] @staticmethod def get_algebraic(x, z, u, d): # x = states # u = internal inputs # d = disturbances [currently unused] Qtot = u[0] x_m = u[15:] # mass fraction of components in inlet stream ci_avg = x F_OR = z[0: NUM_COMPONENTS] # molar flow rate of organic phase. i.e. waste stream [mol/min] F_AQ = z[NUM_COMPONENTS: NUM_COMPONENTS * 2] # molar flow rate of acqueous phase i.e. product stream [mol/min] Q_OR = z[NUM_COMPONENTS * 2] # volumetric flow rate of organic phase [L/min] Q_AQ = z[NUM_COMPONENTS * 2 + 1] # volumetric flow rate of acqueous phase [L/min] # calculate algebraic equation residuals # Eq. (9) res1 = F_OR + F_AQ - Qtot * ci_avg # Eq. (11) res2 = (x_m[13] / (x_m[13] + x_m[7] + EPS)) * Qtot - Q_OR # Eq. (13) res3 = Q_OR * SEPARATION_PARTITION_COEFFICIENTS * F_AQ - Q_AQ * F_OR res4 = Q_OR + Q_AQ - Qtot return vertcat(res1, res2, res3, res4) # merge the residuals. use np.concatenate when not using casadi
# overall plant model
[docs]class Plant: def __init__(self, ND1, ND2, ND3, V1, V2, V3, V4, dt): # ND1 = number of spatial discretization points for reactor 1 # ND2 = number of spatial discretization points for reactor 2 # ND3 = number of spatial discretization points for reactor 3 # V1 = volume of reactor 1 # V2 = volume of reactor 2 # V3 = volume of reactor 3 # V4 = volume of liquid-liquid separator # dt = sampling time # six external input streams and 2 external output streams self.input = [Stream() for _ in range(6)] self.output = [Stream() for _ in range(2)] # ::: ::: Mixer: 1. has two inlets self.mixer1 = Mixer(1, 2) # connect S1 & S2 to Mixer 1 self.mixer1.input[:] = self.input[0:2] # ::: ::: Tubular reactor: 1 self.reactor1 = TubularReactor(2, V1, ND1) # connect outlet of mixer 1 to inlet of reactor 1 self.reactor1.input = self.mixer1.output # ::: ::: Mixer: 2. has 3 inlets self.mixer2 = Mixer(3, 3) # connect S3 & S4 to mixer inlets self.mixer2.input[0:2] = self.input[2:4] # connect outlet from reactor 1 to the 3rd inlet of mixer 2 self.mixer2.input[2] = self.reactor1.output # ::: ::: Tubular reactor: 2 self.reactor2 = TubularReactor(4, V2, ND2) # connect outlet of mixer 2 to inlet of reactor 2 self.reactor2.input = self.mixer2.output # ::: ::: Mixer: 3. has 3 inlets self.mixer3 = Mixer(5, 3) # connect S5 & S6 to the inlets of mixer 3 self.mixer3.input[0:2] = self.input[4:6] # connect the outlet of reactor 2 to the inlet of mixer 3 self.mixer3.input[2] = self.reactor2.output # ::: ::: Tubular reactor: 3 self.reactor3 = TubularReactor(6, V3, ND3) # connect the outlet of mixer 3 to the inlet of reactor 3 self.reactor3.input = self.mixer3.output # ::: ::: Liquid-Liquid separator: 1 self.llseparator = LLSeparator(7, V4) # connect outlet of reactor 3 to inlet of llseparator self.llseparator.input = self.reactor3.output # connect the outlets of the llseparator to the two outlets of the overall process self.llseparator.output[0:2] = self.output[0:2] # define sizes of variables self.Nx = NUM_COMPONENTS * (ND1 + ND2 + ND3 + 1) # state variables self.Nz = 30 # algebraic variables self.Nu = 32 # internal inputs # create casadi symbolic variables x = SX.sym('x', self.Nx) u = SX.sym('u', self.Nu) z = SX.sym('z', self.Nz) # create integrator opts = {"tf": dt, "abstol": 1E-10} # interval length # dictionary for the integrator dae = {'x': x, 'z': z, 'p': u, 'ode': self.get_derivative(x, z, u), 'alg': self.get_algebraic(x, z, u)} # create the dae integrator self.F = integrator('F', 'idas', dae, opts) # this calculates the environmental factor. all components are considered harmless except # water and atropine in product stream
[docs] @staticmethod def calculate_Efactor(z): # z = algebraic states # component mass flow rate of organic stream F_mass_OR = z[0: NUM_COMPONENTS] * MOLECULAR_WEIGHT # component mass flow rate of aqueous stream F_mass_AQ = z[NUM_COMPONENTS: NUM_COMPONENTS * 2] * MOLECULAR_WEIGHT # calculate E-factor Efactor = (np.sum(np.delete(F_mass_OR, [7])) + np.sum(np.delete(F_mass_AQ, [7, 8]))) \ / F_mass_AQ[8] return Efactor.full().ravel().item()
# this function simulates one time step.
[docs] def simulate(self, x, z, u): # x = the state of the plant # z = an initial guess of the algebraic state for the algebraic equation solver. # a good guess results in faster computation # u = the external inputs i.e. volumetric flow rates for streams 1--4 # update the inlet concentrations of the reactors with the outlets from the mixers # and return the updated states as well as all the internal inputs x_system, u_system = self.mix_and_get_initial_condition(x, u) # compute the states at the next time step x_next = self.F(x0=x_system, z0=z, p=u_system) # return the updated initial system state, next system state and the algebraic states return x_system, x_next["xf"], x_next["zf"]
# compute the mixer equations and update the initial state concentration of the reactors # with the outlets of the mixers
[docs] def mix_and_get_initial_condition(self, x, u): ND1 = self.reactor1.num_discretization_points ND2 = self.reactor2.num_discretization_points ND3 = self.reactor3.num_discretization_points # mixer 1 # stream 1: 2M TROPINE in DMF self.mixer1.input[0].component_mass_fraction[0] = 0.293 # approximate mass fraction of 2M Tropine in DMF self.mixer1.input[0].component_mass_fraction[1] = 0.707 # approximate mass fraction of 2M Tropine in DMF self.mixer1.input[0].evaluate_average_mass_density() # approximate average mass density of 2M Tropine in DMF self.mixer1.input[0].total_volumetric_flowrate = u[0] / 1000.0 # set total volumetric flowrate of tropine self.mixer1.input[0].total_volumetric_flowrate_to_total_mass_flowrate() self.mixer1.input[0].total_mass_flowrate_to_component_mass_flowrate() # stream 2: PHENYLACETYLCHLORIDE (pure or neat) self.mixer1.input[1].component_volumetric_flowrate[2] = u[1] / 1000.0 self.mixer1.input[1].component_volumetric_flowrate_to_component_mass_flowrate() # mix streams self.mixer1.mix_streams_mass() # auxilliary calculations self.mixer1.output.evaluate_component_mass_fraction() self.mixer1.output.evaluate_average_mass_density() self.mixer1.output.evaluate_total_volumetric_flowrate() self.mixer1.output.evaluate_component_molar_concentration() # select the states for reactor 1 x_reactor1 = x[0: NUM_COMPONENTS * ND1] # reshape the states into a 2D array. casadi reshape function is used for consistency x_reactor1 = reshape(x_reactor1, (NUM_COMPONENTS, ND1)) # inlet dirichlet boundary condition x_reactor1[:, 0] = self.reactor1.input.component_molar_concentration[:] # set the outlet concentration of reactor 1 to the last state concentrations self.reactor1.output.component_molar_concentration = x_reactor1[:, -1] # set reactor1 input (internal) to the total volumetric flow rate of Mixer 1 u_reactor1 = self.mixer1.output.total_volumetric_flowrate # reshape back to vector x_reactor1 = reshape(x_reactor1, (ND1 * NUM_COMPONENTS, 1)) # assumption of constant total volumetric flowrate in the axial direction # => total volumetric flow rate does not change inside the reactor self.reactor1.output.total_volumetric_flowrate = self.reactor1.input.total_volumetric_flowrate # mixer 2 # from reactor 1 self.mixer2.input[2].component_molar_concentration_to_component_mass_concentration() self.mixer2.input[2].component_mass_concentration_to_component_mass_flowrate() # stream 3:37 wt% FOMALDEHYDE self.mixer2.input[0].component_mass_fraction[4] = 0.37 self.mixer2.input[0].component_mass_fraction[7] = 0.63 self.mixer2.input[0].evaluate_average_mass_density() self.mixer2.input[0].total_volumetric_flowrate = u[2] / 1000.0 self.mixer2.input[0].total_volumetric_flowrate_to_total_mass_flowrate() self.mixer2.input[0].total_mass_flowrate_to_component_mass_flowrate() # stream 4: 4M NaOH solution self.mixer2.input[1].component_mass_fraction[6] = 0.138 self.mixer2.input[1].component_mass_fraction[7] = 0.862 self.mixer2.input[1].evaluate_average_mass_density() self.mixer2.input[1].total_volumetric_flowrate = u[3] / 1000.0 self.mixer2.input[1].total_volumetric_flowrate_to_total_mass_flowrate() self.mixer2.input[1].total_mass_flowrate_to_component_mass_flowrate() # mix the three streams self.mixer2.mix_streams_mass() # auxilliary calculations self.mixer2.output.evaluate_component_mass_fraction() self.mixer2.output.evaluate_average_mass_density() self.mixer2.output.evaluate_total_volumetric_flowrate() self.mixer2.output.evaluate_component_molar_concentration() # reactor 2 x_reactor2 = x[NUM_COMPONENTS * ND1: NUM_COMPONENTS * (ND1 + ND2)] x_reactor2 = reshape(x_reactor2, (NUM_COMPONENTS, ND2)) # reshape # inlet dirichlet boundary condition x_reactor2[:, 0] = self.reactor2.input.component_molar_concentration[:] self.reactor2.output.component_molar_concentration = x_reactor2[:, -1] x_reactor2 = reshape(x_reactor2, (ND2 * NUM_COMPONENTS, 1)) u_reactor2 = self.mixer2.output.total_volumetric_flowrate # constant total volumetric flowrate in the axial direction self.reactor2.output.total_volumetric_flowrate = self.reactor2.input.total_volumetric_flowrate # mixer 3 # from reactor 2 self.mixer3.input[2].component_molar_concentration_to_component_mass_concentration() self.mixer3.input[2].component_mass_concentration_to_component_mass_flowrate() # stream 5 self.mixer3.input[0].component_mass_fraction[12] = 0.022 self.mixer3.input[0].component_mass_fraction[7] = 0.978 self.mixer3.input[0].evaluate_average_mass_density() self.mixer3.input[0].total_volumetric_flowrate = 0.2 / 1000.0 # 0.3 # 0.2 # [mL/min] Fixed self.mixer3.input[0].total_volumetric_flowrate_to_total_mass_flowrate() self.mixer3.input[0].total_mass_flowrate_to_component_mass_flowrate() # stream 6 self.mixer3.input[1].component_volumetric_flowrate[13] = 0.5 / 1000.0 # 0.5 # [mL/min] Fixed self.mixer3.input[1].component_volumetric_flowrate_to_component_mass_flowrate() # mix the 3 streams self.mixer3.mix_streams_mass() # auxilliary calculations self.mixer3.output.evaluate_component_mass_fraction() self.mixer3.output.evaluate_average_mass_density() self.mixer3.output.evaluate_total_volumetric_flowrate() self.mixer3.output.evaluate_component_molar_concentration() # reactor 3 x_reactor3 = x[NUM_COMPONENTS * (ND1 + ND2):NUM_COMPONENTS * (ND1 + ND2 + ND3)] x_reactor3 = reshape(x_reactor3, (NUM_COMPONENTS, ND3)) # reshape # inlet dirichlet boundary condition x_reactor3[:, 0] = self.reactor3.input.component_molar_concentration[:] self.reactor3.output.component_molar_concentration = x_reactor3[:, -1] x_reactor3 = reshape(x_reactor3, (ND3 * NUM_COMPONENTS, 1)) u_reactor3 = self.mixer3.output.total_volumetric_flowrate # constant total volumetric flowrate in the axial direction self.reactor3.output.total_volumetric_flowrate = self.reactor3.input.total_volumetric_flowrate self.reactor3.output.component_molar_concentration_to_component_mass_concentration() self.reactor3.output.component_mass_concentration_to_component_mass_flowrate() self.reactor3.output.evaluate_component_mass_fraction() # separator 1 x_llseparator = x[NUM_COMPONENTS * (ND1 + ND2 + ND3):] q_llseparator = self.reactor3.output.total_volumetric_flowrate component_molar_concentration_llseparator = self.reactor3.output.component_molar_concentration[:] component_mass_fraction_llseparator = self.reactor3.output.component_mass_fraction[:] u_llseparator = vertcat(q_llseparator, component_molar_concentration_llseparator, component_mass_fraction_llseparator) return vertcat(x_reactor1, x_reactor2, x_reactor3, x_llseparator), \ vertcat(u_reactor1, u_reactor2, u_reactor3, u_llseparator)
[docs] def get_derivative(self, x, z, u): # some variables ND1 = self.reactor1.num_discretization_points ND2 = self.reactor2.num_discretization_points ND3 = self.reactor3.num_discretization_points # Reactor 1 x_reactor1 = x[0: NUM_COMPONENTS * ND1] T_reactor1 = 373.15 # [K] Fixed reactor temperature q_reactor1 = u[0] u_reactor1 = [q_reactor1, T_reactor1] # reactor 1 state velocities xdot_reactor1 = self.reactor1.get_derivative(x_reactor1, u_reactor1, 0) # Reactor 2 x_reactor2 = x[NUM_COMPONENTS * ND1: NUM_COMPONENTS * (ND1 + ND2)] T_reactor2 = 373.15 # [K] Fixed reactor temperature q_reactor2 = u[1] u_reactor2 = [q_reactor2, T_reactor2] # reactor 2 state velocities xdot_reactor2 = self.reactor2.get_derivative(x_reactor2, u_reactor2, 0) # Reactor 3 x_reactor3 = x[NUM_COMPONENTS * (ND1 + ND2): NUM_COMPONENTS * (ND1 + ND2 + ND3)] T_reactor3 = 323.15 # [K] Fixed reactor temperature q_reactor3 = u[2] u_reactor3 = [q_reactor3, T_reactor3] # reactor 3 state velocities xdot_reactor3 = self.reactor3.get_derivative(x_reactor3, u_reactor3, 0) # Separator 1 x_llseparator = x[NUM_COMPONENTS * (ND1 + ND2 + ND3):] z_llseparator = z[:] u_llseparator = u[3:] xdot_llseparator = self.llseparator.get_derivative(x_llseparator, z_llseparator, u_llseparator, 0) xdot = vertcat(xdot_reactor1, xdot_reactor2, xdot_reactor3, xdot_llseparator) return xdot
[docs] def get_algebraic(self, x, z, u): ND1 = self.reactor1.num_discretization_points ND2 = self.reactor2.num_discretization_points ND3 = self.reactor3.num_discretization_points x_llseparator = x[NUM_COMPONENTS * (ND1 + ND2 + ND3):] z_llseparator = z[:] u_llseparator = u[3:] res_llseparator = self.llseparator.get_algebraic(x_llseparator, z_llseparator, u_llseparator, 0) return res_llseparator
# simulate model for one time step and get next states and output
[docs]def atropine_sim_model(x, u, A, B, C, D): # x = state # u = input. u = u / 1000 # this has been scaled in the optimization problem. hence the division by 1000 to unscale it xplus = np.matmul(A, x) + np.matmul(B, u) # y = np.matmul(C, x) + np.matmul(D, u) return xplus, y
# MPC/EMPC controller
[docs]def atropine_mpc_controller(x0, N, Nx, Nu, uss, ur, yr, A, B, C, D): # controller weights. different values may lead to different controller performance or cause instability R = np.identity(4) * 0.1 # weight on inputs Q = 10 # weight on output # start with empty NLP w = [] # decision variables w0 = [] # decision variables initial guess lbw = [] # lower bound on decision variables ubw = [] # upper bound on decision variables J = 0 # initial cost g = [] # state constraint lbg = [] # lower bound on state constraint ubg = [] # upper bound on state constraint # formulate NLP xk = x0 # fix initial state from state estimator for k in range(N): Uk = SX.sym('U_' + str(k), Nu) # create input variable at time step k w.append(Uk) # store in decision variable list lbw.append(- uss * 1000) # lower bound on inputs at time k ubw.append(uss * 1000) # upper bound on inputs at time k w0.append([0] * Nu) # initial input guess # simulate model to get x(k+1) and y(k) xk, yk = atropine_sim_model(xk, Uk, A, B, C, D) # calculate the cost J += Q * (yk - yr) ** 2 \ + mtimes((Uk - ur).T, mtimes(R, (Uk - ur))) # add state constraints. currently the states are unconstrained since the # identified model states have no physical meaning g.append(xk) lbg.append([-inf] * Nx) ubg.append([inf] * Nx) # Create an NLP solver opts = {} opts["verbose"] = False opts["ipopt.print_level"] = 0 opts["print_time"] = 0 prob = {'f': J, 'x': vertcat(*w), 'g': vertcat(*g)} solver = nlpsol('solver', 'ipopt', prob, opts) # Solve the NLP sol = solver( x0=vertcat(*w0), lbx=vertcat(*lbw), ubx=vertcat(*ubw), lbg=vertcat(*lbg), ubg=vertcat(*ubg) ) # get solution w_opt = sol['x'] u_opt = w_opt[0:Nu] return u_opt.full().ravel()